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TECHNICAL PAPER 

A NEW STATE RECONSTRUCTOR FOR DIGITAL CONTROL SYSTEMS 
USING WEIGHTED-AVERAGED MEASUREMENTS 

1. INTRODUCTION 

Consider the usual linear continuous-time plant driven by a zero-order-hold with sampled output, 
as shown in Figure I .  The most common approach to reconstructing the state of this system is undoubted- 
ly the state observer [ I ] .  However, it is well known that the state observer has some undesirable 
characteristics. Firstly, it is a dynamical system in itself, and, hence, adds additional states and eigen- 
values to the system. Secondly, as a consequence, the reconstructed state is normally an approximation 
to the true state and is usually not a good one early in the state reconstruction process, unless the initial 
state of the system is well known. 

Figure 1. Linear continuous-time plant driven by a zero-order-hold with a sampled output. 

The work in References 2 to 7 focuses on a relatively new state reconstructor that has neither of 
these problems. If the plant is noise-free and can be modeled precisely, the output of this state reconstruc- 
tor exactly equals the true state of the plant and accomplishes this without any knowledge of the plant’s 
initial state. Besides, it adds no new states or eigenvalues to the plant equation in the discrete time model 
of the system. In fact, it does not affect the plant equation in the discrete time model at all; it affects the 
measurement equation only. It is characterized by the fact that discrete measurements are generated every 
T/N seconds and input into a multi-input/multi-output moving average process. The output of this 
process is sampled every T seconds and utilized in reconstructing the state of the system. Should process 
noise, measurement noise, or modeling errors be a problem, it can be catenated with an observer or a 
Kalman filter for a synergistic effect. 

In this paper, another new state reconstructor is presented. This one has the same advantages, 
compared to the state observer, as the one developed in References 2 to 7.  However, it is unique in the 
way it achieves state reconstruction. A continuous-time output vector from the plant is convoluted with a 
weighting-function matrix whose elements are time dependent. This result is integrated over T second 
intervals to generate weighted-averaged measurements, every T seconds, that are used in the state recon- 
struction process. In actuality, the weighting-function matrix is the impulse-response matrix for a multi- 
input/multi-output system and the weighted-averaged measurements are the forced responses of this 



system to the plant output over T second intervals. As a result, an equally valid way of generating the 
weighted-averaged measurements is as follows. The continuous-time output vector from the plant is 
input into a continuous-time multi-input/multi-output system that is initially at rest. After T seconds, the 
output of this system is the weighted-averaged measurement vector. This process is repeated every T 
seconds. 

This new state reconstructor is presented in the remainder of this paper. In Section 11, some pre- 
liminary mathematical formulations pertinent to the development of it are derived. In Section 111, the new 
state reconstructor is presented. An example of it  is given in Section IV. Some final comments about it 
and its implementation are made in Section V .  

II. PRELIMINARY 

For the piant in Figure 1, x(t)ER" is the state, g(kT)ER' is the control input, ys(kT)ER"' is the 
standard output or measurement vector, FER""" is the system matrix, GER""' is the control matrix, and 
CSER'llYI1 is the standard output matrix. I t  is well known that this system can be modeled at the sampling 
instants kT by the discrete state equations [8] 

- x ( k +  1 )  = AA(k) + Bg(k) 

where k is the usual shorthand notation for time kT, 

and 

+(t)ER""" is the state transition matrix. AER""" is the system matrix and BER""' is the control matrix for 
the discrete state equations ( 1 )  and (2). 
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Now consider the plant in Figure 2, which is a generalization of the one in Figure I .  In  addition to 
the standard output ys(kT), it has the output yA’(kT)ERq found by differencing the weighted-averaged 
measurement yA(kT’ERq with the delayed-input term Hg[(k-l )TI where HERqx’. The vector yA(kT) is 
generated by convoluting the continuous-time output a t )ERP for (k-l)T < t d kT with the weighting- 
function matrix O(t)ERqxp and integrating this result over T second intervals. Observe that this is equiv- 
alent to inputtingL(t) for (k-l)T < t d kT into the multi-input/multi-output system defined by the trans- 
fer-function matrix 

where s is the Laplace transform variable. If the system is at rest at time (k-l)T, its output at time kT will 
be - yA(kT). I t  follows from the definitions of L(t) and L(t) that the output matrix CAERPX”. 

For the system in Figure 2, equations 1 to 5 apply. Observe that 

where 

and 

It is known that [SI 

Letting to = kT in equation (9) and substituting this result into equation (8) yields 
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1 

Sinceg(t) = u[(k-l)T] for (k-1)T Q t < kT, equation (10) can be written as 

- yA(kT) = D L(kT) + E - u[(k-l)T] 

where 

T 

D = J O(kT-5) CA @((-kT) d( 
(k-l  )T 

1 kT 5 
E = J O(kT-EJ CA rJ $(e-.) d7 G . 

L k T  J (k-I)T 

the transformation A = 5-kT in equation (12) produces 

0 
D = J €)(-A) CA A(A) dA 

-T 

he transformations A = 5-7 and p .= 5-kT successively in equation ( 1  3) yields 



From equations (2),  (6), (7), and ( 1  l ) ,  

H = E = J W-p) CA B(p) dp . 
-T 

In this case, the discrete state equations for the system in Figure 2 become 

- x ( k +  1)  = Az(k) + BuJk) 

where the output matrix CrER'"'tq'Xn is 

This follows from equations ( I ) ,  (16), and (17) 

111. THE NEW STATE RECONSTRUCTOR 

A block diagram of the new state reconstructor catenated with the plant is shown in Figure 3 .  Its 
output is - yT'(kT)€R". Let the matrix C;€Rnx("'+q) be the pseudo-inverse of CT. That is, let 

as shown in Figure 3, where CT is defined by equation (20) and ( C T ~  CT) is assumed nonsingular. Then 
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It was shown in Section I1 that the discrete state equations for the system in Figure 3 from u_(kT) to yT(kT) 
are given by equations ( 1  8) and (19). Using these and equation (21), the discrete state equationsfor the 
system in Figure 3 become 

- x ( k +  I )  = A L(k) + B g ( k )  

Hence, the state reconstructor exactly reconstructs the state of the system and does so without affecting 
the plant equation in the discrete time model of the system. 

It was assumed that (CTT CT) is nonsingular. This places certain restrictions on CTER(m+q)Xn ~91. 
First, it is necessary that ( m + q )  Z n, or equivalently, q 3 (n-m). This is readily satisfied since q,  the 
number of rows in O(t)ERqxp, can be chosen arbitrarily. Secondly, it is necessary that rank (C,) = n. By 
virtue of equations (14), (15), and (20), rank (C,) is affected by c$(t), O(t), Cs, and CA. In most problems: 
+(t) will be fixed; O(t) can be chosen arbitrarily; C s  and CA will lie somewhere in between. Hence, given 
+(t), if O(t) can be chosen, and perhaps Cs and CA to some extent, so that rank (CT) = n, the state of the 
plant can be reconstructed according to equation (22) for k b I .  

IV. AN EXAMPLE 

Consider the double integrator plant driven by a zero-order-hold as shown in Figure 4. The output 
z(t) = x l ( t )  is to be used in generating the weighted-averaged measurements for state reconstruction; 
there are no standard measurements in this example. Manipulating this plant into the format of Figure 3 
yields 
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Figure 4. Double integrator plant in the example. 

where Cs is a null matrix. It is straightforward to show that 

and 

[:, :I ' 
A(t) = +(t) = 

0 

B(t) = 

t s +(A) dX = [' ' t 2 ]  , 
O t  

It is clear that n = 2, m = 0, and p = 1 .  The state reconstructor in Figure 3 requires that q 2 (n-m) or 
q 3 2. Choose q = 2. Hence, the weighting-function matrix e(t)ERqxp becomes e(t)ER2"'. Choose 

Taking the Laplace transform of e(t) produces 
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Observe that 8 , ( S )  is an integrator and 8,(S) is a low-pass filter with a time constant of T/2 seconds. 
Hence, in implementing the state reconstructor for this example, the weighted-averaged measurements 
could be generated in either of two equally valid ways. One way is to determine the convolution integral 
shown in Figure 3 using equation (23). The other is to input z(t), (k-I)T<tSkT, into the system O(S) 
with zero initial conditions at t = (k-1)T. At t = kT, the output of this system is yA(kT). See how O(S) 
can affect measurement noise in z(t) i f  it is present. Choosing O(t), in general, toreduce the effects of 
measurement noise is an area for future study. 

I Having chosen O(t )  in this example, the other parameters in the state reconstructor can be found 
using the formulations in Section 111.  Doing this, it turns out that 

I T  ( I - € ? )  
T ?  
- (3e---I ) 
2 1 

and 

The new state reconstructor is now completely defined for this example. 

V. FINAL COMMENTS 

A new state reconstructor for a linear continuous-time plant driven by a zero-order-hold has been 
presented. I t  is unique in that it generates weighted-averaged measurements from a continuous-time 
output and utilizes these in reconstructing the state of the plant every T seconds. I t  has the same advan- 
tages, compared to the state observer, as the state reconstructor developed in References 2 to 7. These are 
enumerated in Section 1 .  Should process noise, measurement noise, or modeling errors pose a problem 
for i t ,  it could be catenated with an observer or a Kalman filter for a synergistic effect. Determining the 
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effects of noise and modeling errors on the new state reconstructor is an area for future study. Reducing 
their effects by judiciously choosing the time-dependent elements of the weighting-function matrix is 
another area for future study. 

With regard to implementing this new state reconstructor, it seems natural to generate a vector of 
weighted-averaged measurements wherever a scalar continuous-time output exists. Every T seconds, all 
measurements, weighted-averaged and standard, could be sent to a central processor. There, the 
weighted-averaged measurements could be properly combined and all further calculations and operations 
performed to reconstruct the state of the system. There are several ways of calculating the weighted- 
averaged measurements. They could be done in microprocessors using digital approximations or else in 
analog circuitry. In either case, a convolution integral, transfer function, or state equation approach is 
possible. This is also an area for future study. 
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